
Application
Observability
[Real life Schrodinger's cat]

2

We are One-stop-shop for
[DevOps, Cloud & Kubernetes]

25
Top cloud
experts

100+
Kubernetes
clusters

3

[Transforming businesses
to become cloud native
and future ready]

Our mission

4

About me

One of 3 founders of
Labyrinth Labs.  

I really enjoy working
on Open Source
projects & being able
to help.  
 

I’ve been a DevOps
engineer for several
years, enjoying some
kernel hacking with
NetBSD in my free
time. 
 

Family, hiking,
lacrosse + basketball
(sports) 
 

Personal
Profile

Profession Work
Experience

Hobbies

Adam Hamšík 

CEO & Co-Founder 

http://netbsd.org

WTF is Schrodinger’s cat ?

5

6

● Current state Infrastructure Architecture  

○ Distributed systems vs Dynamic systems 

○ Horizontal vs Vertical Scaling 

○ Availability vs Reliability  

○ Microservices vs Monoliths vs Event Driven Architecture 

○ Serverless  

○ Chaos Engineering 

● What does observability mean? 

○ Why is it important? 

● Observability Stack 

○ Description and short intro  

● How do we do it then ? 

Tl;DR

7

Quick Wins
Use libraries for logging, metrics and traces 
 
 
 
 

No deploys to production on Fridays and holidays 

Avoid shiny new object/framework syndrome 
 
 printf != Logging / Debugger 
 

 
 

Part I
[Modern Infrastructure
Architecture]

Examples how we run apps these days.

8

9

Distributed systems
Distributed System 
 

A system where components are spread across multiple physical
or virtual machines and communicate over a network. 

 

● Multiple machines work as a single logical entity 
● Each machine (node) may handle a specific task. 
● Helps with scalability and fault tolerance. 

 

10

Dynamic systems

Dynamic System 
 
A system that changes its structure or behavior
automatically in response to conditions (like load or
failure). 
 
● Automatically scales up/down based on demand. 
● Can self-heal if a part fails  
● Adapts in real time = cost-effective + resilient. 

 
 
 

 

 

11

Horizontal vs Vertical Scaling
Vertical  
● Using bigger machines and

bigger machines (Hulk) 
● Less reliable  

○ One machine fails and you
are done. 

 
Horizontal 
● Adding more machines

(Naturo) 
● More complicated architecture 
● Can survive failure of multiple

machines 

12

Availability vs Reliability
Reliability  

● The likelihood of a service failing 
● To increase this you have to remove single points of

failure. 
 
Availability 

● Availability = Reliability x Maintenance 
 

● The percentage of time a service is operational 
 

13

Monolith as software
architecture pattern

A monolith is a single, tightly coupled application where all
features are packaged and deployed as one unit. 
 
 
 
 

 

 

Pros 
● Easier to start 
● No network latency

between components 
● Easy for developers to

contribute to. 
 
 
 
 
 

 

 

Cons 
● Can be harder to scale later 
● Longer deployment cycles 
● Tight coupling = harder to

test or isolate bugs 
 

14

Microservices

Microservices are an architectural pattern where an
application is split into small, independent services, each
responsible for a specific business capability. 
 
 
 
 
 
 

 

 

Pros 
● Independent deployments 
● Better Scalability per

service 
● Fault isolation. 
● Required if you have

multiple product teams. 
 
 
 
 
 

 

 

Cons 
● Increased complexity 
● Requires DevOps & automation

maturity 
● Harder debugging 
● API Versioning, Compatibility 

 

Microservices vs Monolith

https://medium.com/startlovingyourself/microservices-vs-monolithic-architecture-c8df91f16bb4

https://medium.com/startlovingyourself/microservices-vs-monolithic-architecture-c8df91f16bb4

Microservices vs Monolith

https://devcamp.com/site_blogs/monolith-vs-microservice-rails-applications

https://devcamp.com/site_blogs/monolith-vs-microservice-rails-applications

17

18

Event Driven Architecture
Event-Driven Architecture (EDA) is a software pattern where
components communicate by producing and reacting to events
(messages), rather than calling each other directly. 

Pros 
● Highly decoupled 
● Scalable 
● Async by default  
● Required if you have

multiple product teams. 
 
 
 
 
 

 

 

Cons 
● Hard debugging 
● API Versioning, Compatibility 
● Event ordering can be tricky 
● Visibility is tough without good

observability tools 
 
 
 

Microservices vs Monolith

https://hazelcast.com/foundations/event-driven-architecture/event-driven-architecture/

https://hazelcast.com/foundations/event-driven-architecture/event-driven-architecture/

20

Serverless Computing
Serverless is a cloud-native architecture where developers write
and deploy code without managing servers. Cloud providers
handle all the infrastructure, scaling, and runtime management. 

Pros 
● No server management 
● Automatic scaling based

on usage 
● Great for event-driven use

cases and microservices 
 
 
 
 
 

 

 

Cons 
● Limited execution time 
● Not ideal for long-running or

stateful processes 
● Harder to debug locally 

 
 
 

21
https://deploy.equinix.com/blog/schrdingers-server/

https://deploy.equinix.com/blog/schrdingers-server/

22

Chaos Engineering
Practice of intentionally breaking
your system in controlled ways to
understand how it behaves under
failure. 
 
 
🧠 “If we know things will break,
let’s test them before they break for
real.” 
 
E.g. Inject failures (e.g., kill services,
delay responses, drop network) 
 
 
 
 

Part II
[Observability Theory]

Some Theory

23

24

Observability Definition
Observability is a measure of how well internal states of a system can be
inferred from knowledge of its external outputs.  
 
In control theory, the observability and controllability of a linear system are
mathematical duals. 
 
The concept of observability was introduced by the Hungarian-American engineer
Rudolf E. Kálmán for linear dynamic systems. [1][2]  
 

 

https://en.wikipedia.org/wiki/Observability

https://en.wikipedia.org/wiki/Observability

25

Observability Software
Definition 

Observability is the ability to collect data about programs' execution, modules'

internal states, and the communication among components. 
 

To improve observability, software engineers use a wide range of logging and tracing

techniques to gather telemetry information, and tools to analyze and use it.  

 

Observability is foundational to site reliability engineering, as it is the first step in

triaging a service outage. 

https://en.wikipedia.org/wiki/Observability

https://en.wikipedia.org/wiki/Log_file
https://en.wikipedia.org/wiki/Tracing_(software)
https://en.wikipedia.org/wiki/Site_reliability_engineering
https://en.wikipedia.org/wiki/Observability

26

Observability Definition

https://en.wikipedia.org/wiki/Observability

Concept Control Theory Software Observability

System State Internal physical variables
(e.g., speed, position)

Application behavior and
health (e.g., request rate,

error rate)

Outputs Measurable outputs (e.g.,
RPM, temperature)

Logs, metrics, traces from
app and infra

Feedback Adjust inputs to control
system

Scale up, restart, alert,
throttle

https://en.wikipedia.org/wiki/Observability

27

Observability Definition

https://en.wikipedia.org/wiki/Observability

Concept Control Theory Software Observability

System State Internal physical variables
(e.g., speed, position)

Application behavior and
health (e.g., request rate,

error rate)

Outputs Measurable outputs (e.g.,
RPM, temperature)

Logs, metrics, traces from
app and infra

Feedback Adjust inputs to control
system

Scale up, restart, alert,
throttle

https://en.wikipedia.org/wiki/Observability

28

Metrics
●  

29

Logs
●  

Part III
[Observability Stack]

Metrics, Logs, Traces, Profiling …

30

Metrics

31

“Numerical values gathered from your system aggregated
over time” 

Metrics {example}

32

node_load5{app_kubernetes_io_name="node-exporter",cluster="prod", instance="192.168.1.1:9100",
kubernetes_cluster="prod", kubernetes_namespace="monitoring", monitoring_scope="system",
namespace="monitoring""} 2.81 
 

● node_load5 -> metric name 

● kubernetes_cluster="prod" -> key value pair aka label 
● 2.81 -> Actual value 

Metrics {definitions}

33

● Metric types 
○ Counter – only goes up (e.g., requests total)
○ Gauge – goes up/down (e.g., memory usage)
○ Histogram – measures latency buckets
○ Summary – like histogram, but sampled

 
● Cardinality in observability refers to the number of unique combinations of labels

(or dimensions) attached to a metric. 
 
http_requests_total{ method="GET", status="200", user_id="123456", uri=”/auth/login”} 
 

RED, USE & Golden Signals

34

● RED (Rate, Errors, Duration) 
○ for services especially User experience 

 
● USE (Utilization, Saturation, Errors) 

○ Best for Hardware & infra health 
 

● Golden Signals (Google SRE) 
○ latency, traffic, errors, saturation 
○ Fast insight into service health

Metrics
● Time series collection happens via a

pull model over HTTP 
● Kubernetes service discovery 
● Instrumentation 

○ client libraries 
○ exporters 

● How much traffic is entering and leaving
your network 

● How many deployments are you making
each day 

● How much CPU is your service consuming 

35

Prometheus

Metric examples

Metrics

36

Prometheus
● Time series collection happens via a

pull model over HTTP 
● Kubernetes service discovery 
● Instrumentation 

○ client libraries 
○ exporters 

Metric examples

● How much traffic is entering and leaving
your network 

● How many deployments are you making
each day 

● How much CPU is your service consuming 

Metrics

37

● Time series collection happens via a
pull model over HTTP 

● Kubernetes service discovery 
● Instrumentation 

○ client libraries 
○ exporters 

● How much traffic is entering and leaving
your network 

● How many deployments are you making
each day 

● How much CPU is your service consuming 

Prometheus

Metric examples

Prometheus
 

● Prometheus collects and
stores its metrics as time
series data 
 

● Metadata are attached to
metrics in optional
key-value pairs called
labels 
 

● Has a multi-dimensional
data model. 

● Flexible query language
PromQL 
  38https://last9.io/blog/prometheus-vs-thanos/

https://last9.io/blog/prometheus-vs-thanos/

What is Prometheus
[intentionally] lacking

39

High availability
● No methods of data deduplication 
● No methods for global view 

 
Long term retention
● No concept of distributed data storage/sharding 
● Keeping data long term is not feasible 

40

● Prometheus needs to run in a Highly available setup 

● We need to keep metrics indefinitely and store them

efficiently 

● We need a single observer point for all clusters 

 

Challenges

41

Monitoring 5000+ pods in multiple clusters 
 
19 TBs of metric data 
3 TBs ingested each month 

Challenges

Thanos
● Open source, highly available Prometheus setup with long term storage capabilities. 

 
● Requires just object store - AWS S3 

 
● Global view, unlimited retention, high availability 

42https://last9.io/blog/prometheus-vs-thanos/

https://last9.io/blog/prometheus-vs-thanos/

Logs

43

“Records of events that have occurred within a software
application or infrastructure.” 

Logs {example}

44

47.29.201.179 - - [28/Feb/2019:13:17:10 +0000] "GET /?p=1 HTTP/2.0" 200 5316 "https://domain1.com/?p=1"
"Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.119 Safari/537.36" "2.75"

log_format custom '$remote_addr - $remote_user [$time_local] "$request" $status $body_bytes_sent "$http_referer"
"$http_user_agent" "$gzip_ratio"';  

We can see what type of request was sent to which URL, from which ip and
what was our status code we used to respond. 

Log Collection

Many log collectors…
● fluentd 
● fluentbit 
● logstash 
● Promtail 
● vector.dev 

Multiple ways to collect logs
● Application runtime 
● Log collector sidecars 
● Log collector DaemonSets 

45

Log Collection

46

Customer Example
● Storage 2TB/logov daily 
● Throughput 51 MB/s 
● During peak 500k logs/sec 

 
Please do not enable debug logs in production. That can lead
to serious performance issues.  
 

Amazon OpenSearch Service

 fully managed 
 

 native integration AWS services 
 

 search and analytics engine for use
cases such as log analytics, real-time
application monitoring, and
clickstream analysis 
 

 AWS CloudTrail integration 

47

Grafana Loki

● Only indexes labels and
metadata 
 

● Simple query language - LogQL 
 

● Multi-tenancy 
 

● Similar alerting concept to
Prometheus  

48

49

Grafana Loki

● Only indexes labels and
metadata 
 

● Simple query language - LogQL 
 

● Multi-tenancy 
 

● Similar alerting concept to
Prometheus  

50

Traces

Record of user requests across services, networks, and
protocols to create a complete picture of how your distributed

system works. 

Distributed Tracing

51

Tracks user requests across services, networks, and protocols and
creates a complete picture of how your distributed system performed
while processing a user request. 
 
● Grafana Tempo 

● OpenTelemetry, Jaeger, Zipkin 

Distributed Tracing

52

● Each activity (segment or span) is recorded as it

through and across services 

● Allows us to find and isolate bottlenecks quickly 

● Identify the root cause of unseen problems 

AWS X-Ray

● Fully managed 

● Creates a map of services used by your application with trace data that

you can use to drill into specific services or issues 

● X-Ray SDK captures metadata for requests made to MySQL and

PostgreSQL databases (self-hosted, Amazon RDS, Amazon Aurora), and

Amazon DynamoDB 

53

54

55

Grafana Tempo

● Distributed tracing backend 

● Cost-efficient, needs just object storage 

● Multiple tracing protocols 

● Allows us to find and isolate bottlenecks quickly 

● Identify the root cause of unseen problems 

56

57

Visualization & Analysis

How it all comes together… 
 

58

Visualization with Grafana

59

● Single point of view for all metrics, logs and traces 

○ Mixed datasources 

○ Alerting 

○ Open-source (self-hosted) 

 

60

61

62

63

64

65

Alerting
An alert is a last-resort signal that tells you: 

 
🔥 “The system has gone outside the boundaries you defined

as acceptable — someone needs to act.” 
 
 
 

66

Alerting
Boundaries comes from  
● SLIs/SLOs  

○ latency must stay below 300ms 
● Infrastructure rules  

○ CPU > 90% for 5 minutes 
● Business impact thresholds  

○ 0 checkouts in 3 mins 
● Hardware based limits 

  67

Alerting
Really, really hard to do  
● Normal is relative  

○ Today’s traffic baseline ≠ tomorrow’s 
● Dynamic infrastructure 

○ Pods restart, services autoscale, server die 
● Infrastructure noise can mask or trigger false alerts 

 

68

https://sre.google/books/chapters/alerting-on-slos/

https://landing.google.com/sre/sre-book/chapters/alerting-introduction/

https://sre.google/books/chapters/alerting-on-slos/

69

Continuous Profiling
Practice of systematically collecting and analyzing detailed performance profiles
from live systems, typically at low overhead. 
 

 
 

● Find performance bottlenecks 
● Optimize hot code paths (functions burning CPU or memory) 
● Reduce cloud costs 
● Catch performance regressions 

 
 

70

Continuous Profiling

Summary

71

● Pillars of observability 
○ Metrics 

■ Prometheus  
■ Thanos 

○ Logs 
■ OpenSearch 
■ Grafana Loki 

○ Traces 
■ AWS X-Ray 
■ Grafana Tempo 

Part VI
[Observability Prax]

Implementation & lessons learned

72

Labyrinth Labs
[Approach]

73

●  

Part IV
[Q&A]

74

75

slido.com -> 3822198 

http://slido.com

Why Real life Schrodinger’s cat ?

76

Without good Observability your application is both working and crashed at the same time
until ….  

 
 
 
 
 
 

Your customer calls your boss.  

77

Contact us
Adam Hamšík 
CEO 
 
adam@lablabs.io 
www.linkedin.com/in/adam-hamsik/ 

79

